If it's not what You are looking for type in the equation solver your own equation and let us solve it.
i^2-20(i)+100=0
a = 1; b = -20; c = +100;
Δ = b2-4ac
Δ = -202-4·1·100
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$i=\frac{-b}{2a}=\frac{20}{2}=10$
| 4x=4+2(3-x) | | 0=x^2+5x+10 | | y+(6-4)=8-(4-1) | | 2(4x-5)+3(3x+6)=24 | | X+19y=7 | | -8×3=x | | -10+16c=11c+10+15c | | (4+7x)+(4+7x)-4+(4+7x)2=180 | | 6x+8+5x-15+2x-8=180 | | 3/4x-10=20 | | -21=w/4 | | i^2-2(i)=-1 | | 90=50+x | | 16=x/3+8 | | x+1,5=17 | | 8-4x=3x^2-6x+4 | | 4.1x-7.3=5 | | 1+4s=-10s+15 | | -5=l(-5)+1l | | 5(4x-5)=-125 | | 5x-19=x+17+2x-10 | | 180=x+100+3x | | 150=x+50 | | y=-2(-3)+1/2 | | -4-7d=-2-9d | | 360=45+15+4x | | 56*8*1/3=b | | y=(-3/4)(-10)+1 | | (I/C)/(.98x(I/C))=1.020 | | 9=8(n) | | (I/C)/(.98xI/C)=1.020 | | 8x-9=3x+7+3x+18 |